ElasticSearch-高级客户端

本文最后更新于:2 个月前

ES & SpringData ES

高级客户端

创建项目 elasticsearch-demo

导入pom文件,ES依赖的版本最好和客户端对应

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.2.1.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<java.version>1.8</java.version>
</properties>

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>

<!--引入es的坐标-->
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.7.0</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-client</artifactId>
<version>7.7.0</version>
</dependency>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>7.7.0</version>
</dependency>

<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.4</version>
</dependency>

</dependencies>

1.在 resource 文件夹下面创建 application.yml 文件

1
2
3
elasticsearch:
host: IP地址
port: 9200

2.启动类

1
2
3
4
5
6
7
8
@SpringBootApplication
public class ElasticsearchDemoApplication {

public static void main(String[] args) {
SpringApplication.run(ElasticsearchDemoApplication.class, args);
}

}

3.创建 com.atguigu.config.ElasticSearchConfig

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
package com.atguigu.config;

import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
@ConfigurationProperties(prefix = "elasticsearch")
public class ElasticSearchConfig {
private String host;
private int port;

public String getHost() {
return host;
}

public void setHost(String host) {
this.host = host;
}

public int getPort() {
return port;
}

public void setPort(int port) {
this.port = port;
}

@Bean
public RestHighLevelClient client(){
return new RestHighLevelClient(RestClient.builder(
new HttpHost(
host,
port,
"http"
)
));
}
}

新建测试类

1
2
3
4
5
6
7
8
9
10
package com.atguigu.test;

@RunWith(SpringRunner.class)
@SpringBootTest
public class ElasticsearchTest {
@Autowired
private RestHighLevelClient client;


}

创建索引

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/**
* 添加索引
*/
@Test
public void addIndex() throws Exception {
//1.使用client获取操作索引的对象
IndicesClient indicesClient = client.indices();
//2.具体操作,获取返回值
CreateIndexRequest createRequest = new CreateIndexRequest("abc ");
CreateIndexResponse response = indicesClient.create(createRequest, RequestOptions.DEFAULT);

//3.根据返回值判断结果
System.out.println(response.isAcknowledged());

}

s001

添加索引和映射

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
    /**
* 添加索引
*/
@Test
public void addIndexAndMapping() throws IOException {
//1.使用client获取操作索引的对象
IndicesClient indicesClient = client.indices();
//2.具体操作,获取返回值
CreateIndexRequest createRequest = new CreateIndexRequest("aaa");
//2.1 设置mappings
String mapping = "{\n" +
" \"properties\" : {\n" +
" \"address\" : {\n" +
" \"type\" : \"text\",\n" +
" \"analyzer\" : \"ik_max_word\"\n" +
" },\n" +
" \"age\" : {\n" +
" \"type\" : \"long\"\n" +
" },\n" +
" \"name\" : {\n" +
" \"type\" : \"keyword\"\n" +
" }\n" +
" }\n" +
" }";
createRequest.mapping(mapping,XContentType.JSON);
CreateIndexResponse response = indicesClient.create(createRequest, RequestOptions.DEFAULT);
//3.根据返回值判断结果
System.out.println(response.isAcknowledged());
}
}

s002

查询索引

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/**
* 查询索引
*/
@Test
public void queryIndex() throws IOException {
IndicesClient indices = client.indices();
GetIndexRequest getReqeust = new GetIndexRequest("aaa");
GetIndexResponse response = indices.get(getReqeust, RequestOptions.DEFAULT);

//获取结果
Map<String, MappingMetaData> mappings = response.getMappings();
for (String key : mappings.keySet()) {
System.out.println(key+":" + mappings.get(key).getSourceAsMap());
}
}

s003

删除索引

1
2
3
4
5
6
7
8
9
10
11
12
13
/**
* 删除索引
*/
@Test
public void deleteIndex() throws IOException {
IndicesClient indices = client.indices();

DeleteIndexRequest deleteRequest = new DeleteIndexRequest("abc");
AcknowledgedResponse response = indices.delete(deleteRequest, RequestOptions.DEFAULT);

System.out.println(response.isAcknowledged());

}

判断索引是否存在

1
2
3
4
5
6
7
8
9
10
11
12
/**
* 判断索引是否存在
*/
@Test
public void existIndex() throws IOException {
IndicesClient indices = client.indices();

GetIndexRequest getRequest = new GetIndexRequest("aaa");
boolean exists = indices.exists(getRequest, RequestOptions.DEFAULT);
System.out.println(exists);

}

添加文档,使用map作为数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/**
* 添加文档,使用map作为数据
*/
@Test
public void addDoc() throws IOException {
//数据对象,map
Map data = new HashMap();
data.put("address","深圳宝安");
data.put("name","尚硅谷");
data.put("age",20);


//1.获取操作文档的对象
IndexRequest request = new IndexRequest("aaa").id("1").source(data);
//添加数据,获取结果
IndexResponse response = client.index(request, RequestOptions.DEFAULT);

//打印响应结果
System.out.println(response.getId());
}

创建 com.atguigu.domain.Person

1
2
3
4
5
6
7
public class Person {
private String id;
private String name;
private int age;
private String address;
// 设置 set get 和tostring方法
}

添加文档,使用对象作为数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
* 添加文档,使用对象作为数据
*/
@Test
public void addDoc2() throws IOException {
//数据对象,javaObject
Person p = new Person();
p.setId("2");
p.setName("硅谷2222");
p.setAge(30);
p.setAddress("北京昌平区");

//将对象转为json
String data = JSON.toJSONString(p);

//1.获取操作文档的对象
IndexRequest request = new IndexRequest("aaa").id(p.getId()).source(data,XContentType.JSON);
//添加数据,获取结果
IndexResponse response = client.index(request, RequestOptions.DEFAULT);

//打印响应结果
System.out.println(response.getId());
}

s004

修改文档

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 /**
* 修改文档:添加文档时,如果id存在则修改,id不存在则添加
*/
@Test
public void updateDoc() throws IOException {
//数据对象,javaObject
Person p = new Person();
p.setId("2");
p.setName("硅谷");
p.setAge(30);
p.setAddress("北京昌平区");

//将对象转为json
String data = JSON.toJSONString(p);

//1.获取操作文档的对象
IndexRequest request = new IndexRequest("aaa").id(p.getId()).source(data,XContentType.JSON);
//添加数据,获取结果
IndexResponse response = client.index(request, RequestOptions.DEFAULT);

//打印响应结果
System.out.println(response.getId());
}

根据id查询文档

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
* 根据id查询文档
*/
@Test
public void findDocById() throws IOException {

GetRequest getReqeust = new GetRequest("aaa","1");
//getReqeust.id("1");
GetResponse response = client.get(getReqeust, RequestOptions.DEFAULT);
//获取数据对应的json
System.out.println(response.getSourceAsString());


}

根据id删除文档

1
2
3
4
5
6
7
8
/**
* 根据id删除文档
*/
@Test
public void delDoc() throws IOException {
DeleteResponse response = client.delete(deleteRequest, RequestOptions.DEFAULT);
System.out.println(response.getId());
}

批量操作-脚本

Bulk 批量操作是将文档的增删改查一些列操作,通过一次请求全都做完。减少网络传输次数。

1
2
3
4
5
6
7
8
9
10
11
12
13
GET person/_search

# 批量操作
# 1 删除1号记录
# 2 添加8号记录
# 3 修改2号记录 名称为二号

POST _bulk
{"delete":{"_index":"person","_id":"1"}}
{"create":{"_index":"person","_id":"8"}}
{"name":"8号","age":80,"address":"北京"}
{"update":{"_index":"person","_id":"2"}}
{"doc":{"name":"2号"}}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
* 1. 批量操作 bulk
*/
@Test
public void testBulk() throws IOException {
//创建bulkrequest对象,整合所有操作
BulkRequest bulkRequest = new BulkRequest();
/*
# 1. 删除1号记录
# 2. 添加6号记录
# 3. 修改3号记录 名称为 “三号”
*/
//添加对应操作
//1. 删除1号记录
DeleteRequest deleteRequest = new DeleteRequest("person","1");
bulkRequest.add(deleteRequest);

//2. 添加6号记录
Map map = new HashMap();
map.put("name","六号");
IndexRequest indexRequest = new IndexRequest("person").id("6").source(map);
bulkRequest.add(indexRequest);

Map map2 = new HashMap();
map2.put("name","三号");
//3. 修改3号记录 名称为 “三号”
UpdateRequest updateReqeust = new UpdateRequest("person","3").doc(map2);
bulkRequest.add(updateReqeust);

//执行批量操作
BulkResponse response = client.bulk(bulkRequest, RequestOptions.DEFAULT);
RestStatus status = response.status();
System.out.println(status);
}

导入数据

将数据库中Goods表的数据导入到ElasticSearch中

① 将数据库中Goods表的数据导入到ElasticSearch中

② 创建索引

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
PUT goods
{
"mappings": {
"properties": {
"title": {
"type": "text",
"analyzer": "ik_smart"
},
"price": {
"type": "double"
},
"createTime": {
"type": "date"
},
"categoryName": {
"type": "keyword"
},
"brandName": {
"type": "keyword"
},
"spec": {
"type": "object"
},
"saleNum": {
"type": "integer"
},
"stock": {
"type": "integer"
}
}
}
}

# 查询索引
GET goods
  • title:商品标题
  • price:商品价格
  • createTime:创建时间
  • categoryName:分类名称。如:家电,手机
  • brandName:品牌名称。如:华为,小米
  • spec: 商品规格。如: spec:{“屏幕尺寸”,“5寸”,“内存大小”,“128G”}
  • saleNum:销量
  • stock:库存量
1
2
3
4
5
6
7
8
9
10
11
create table `goods` (
`id` double ,
`title` varchar (300),
`price` Decimal (22),
`stock` double ,
`saleNum` double ,
`createTime` datetime ,
`categoryName` varchar (600),
`brandName` varchar (300),
`spec` varchar (600)
);

测试数据:测试数据:链接:https://pan.baidu.com/s/14V3csJT1Xf2c-cKFDl7lNg
提取码:sxzx

添加文档数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
POST goods/_doc/1
{
"title":"小米手机",
"price":1000,
"createTime":"2019-12-01",
"categoryName":"手机",
"brandName":"小米",
"saleNum":3000,
"stock":10000,
"spec":{
"网络制式":"移动4G",
"屏幕尺寸":"4.5"
}
}

# 查询文档数据
GET goods/_search

添加坐标

1
2
3
4
5
6
7
8
9
10
11
<!--mybatis-->
<dependency>
<groupId>org.mybatis.spring.boot</groupId>
<artifactId>mybatis-spring-boot-starter</artifactId>
<version>2.1.0</version>
</dependency>

<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
</dependency>

添加 application.yml 配置文件

1
2
3
4
5
6
7
8
9
10
11
12
13
# datasource
spring:
datasource:
url: jdbc:mysql:///es?serverTimezone=UTC
username: root
password: root
driver-class-name: com.mysql.cj.jdbc.Driver


# mybatis
mybatis:
mapper-locations: classpath:mapper/*Mapper.xml # mapper映射文件路径
type-aliases-package: com.atguigu.domain

添加 javabean

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Goods {

private int id;
private String title;
private double price;
private int stock;
private int saleNum;
private Date createTime;
private String categoryName;
private String brandName;
private Map spec;

// @JSONField(serialize = false)//在转换JSON时,忽略该字段
private String specStr;//接收数据库的信息 "{}"

// 生成set get 和 toString方法

}

创建 dao

1
2
3
4
5
6
7
8
9
@Repository
@Mapper
public interface GoodsMapper {
/**
* 查询所有
*/
public List<Goods> findAll();

}

​ 在 resource 文件夹下面 创建 mapper/GoodMapper.xml 配置文件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.atguigu.mapper.GoodsMapper">

<select id="findAll" resultType="goods">
select
`id` ,
`title` ,
`price` ,
`stock` ,
`saleNum` ,
`createTime` ,
`categoryName`,
`brandName` ,
`spec` as specStr
from goods
</select>


</mapper>

添加测试方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
@SpringBootTest

public class ElasticsearchTest2 {

@Autowired
private GoodsMapper goodsMapper;
/**
* 批量导入
*/
@Test
public void importData() throws IOException {
//1.查询所有数据,mysql
List<Goods> goodsList = goodsMapper.findAll();

//System.out.println(goodsList.size());
//2.bulk导入
BulkRequest bulkRequest = new BulkRequest();

//2.1 循环goodsList,创建IndexRequest添加数据
for (Goods goods : goodsList) {
//2.2 设置spec规格信息 Map的数据 specStr:{}
//goods.setSpec(JSON.parseObject(goods.getSpecStr(),Map.class));

String specStr = goods.getSpecStr();
//将json格式字符串转为Map集合
Map map = JSON.parseObject(specStr, Map.class);
//设置spec map
goods.setSpec(map);
//将goods对象转换为json字符串
String data = JSON.toJSONString(goods);//map --> {}
IndexRequest indexRequest = new IndexRequest("goods");
indexRequest.id(goods.getId()+"").source(data, XContentType.JSON);
bulkRequest.add(indexRequest);
}
BulkResponse response = client.bulk(bulkRequest, RequestOptions.DEFAULT);
System.out.println(response.status());
}

}

查询数据是否导入

1
GET goods/_search

查询所有matchAll查询

matchAll查询:查询所有文档

kibana 演示

1
2
3
4
5
6
7
8
9
10

# 查询
GET goods/_search
{
"query": {
"match_all": {}
},
"from": 0,
"size": 100
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/**
* 查询所有
* 1. matchAll
* 2. 将查询结果封装为Goods对象,装载到List中
* 3. 分页。默认显示10条
*/
@Test
public void testMatchAll() throws IOException {
//2. 构建查询请求对象,指定查询的索引名称
SearchRequest searchRequest = new SearchRequest("goods");
//4. 创建查询条件构建器SearchSourceBuilder
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();

//6. 查询条件
QueryBuilder query = QueryBuilders.matchAllQuery();//查询所有文档
//5. 指定查询条件
sourceBuilder.query(query);

//3. 添加查询条件构建器 SearchSourceBuilder
searchRequest.source(sourceBuilder);

// 8 . 添加分页信息
sourceBuilder.from(0);
sourceBuilder.size(100);

//1. 查询,获取查询结果
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

//7. 获取命中对象 SearchHits
SearchHits searchHits = searchResponse.getHits();
//7.1 获取总记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);

List<Goods> goodsList = new ArrayList<>();
//7.2 获取Hits数据 数组
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
//获取json字符串格式的数据
String sourceAsString = hit.getSourceAsString();
//转为java对象
Goods goods = JSON.parseObject(sourceAsString, Goods.class);
goodsList.add(goods);

}
for (Goods goods : goodsList) {
System.out.println(goods);
}
}

term 查询

term查询:不会对查询条件进行分词。

kibana 演示

1
2
3
4
5
6
7
8
9
10
11
12
13
GET goods

# term 查询
GET goods/_search
{
"query": {
"term": {
"categoryName": {
"value": "手机"
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
@SpringBootTest
public class ElasticsearchTest2 {
/**
* termQuery:词条查询
*/
@Test
public void testTermQuery() throws IOException {
SearchRequest searchRequest = new SearchRequest("goods");
SearchSourceBuilder sourceBulider = new SearchSourceBuilder();

QueryBuilder query = QueryBuilders.termQuery("title","华为");//term词条查询
sourceBulider.query(query);

searchRequest.source(sourceBulider);
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

SearchHits searchHits = searchResponse.getHits();
//获取记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);

List<Goods> goodsList = new ArrayList<>();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String sourceAsString = hit.getSourceAsString();

//转为java
Goods goods = JSON.parseObject(sourceAsString, Goods.class);

goodsList.add(goods);
}

for (Goods goods : goodsList) {
System.out.println(goods);
}
}
}

matchQuery:词条分词查询

match查询:
• 会对查询条件进行分词。
• 然后将分词后的查询条件和词条进行等值匹配
• 默认取并集(OR)

kibana 演示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# match 查询 "title": "手机"
GET goods/_search
{
"query": {
"match": {
"title": "华为"

}
}
}
# match 查询 "operator": "or"
GET goods/_search
{
"query": {
"match": {
"title": {
"query": "华为手机",
"operator": "and"
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
* matchQuery:词条分词查询,分词之后的等值匹配
*/
@Test
public void testMatchQuery() throws IOException {


SearchRequest searchRequest = new SearchRequest("goods");

SearchSourceBuilder sourceBulider = new SearchSourceBuilder();

MatchQueryBuilder query = QueryBuilders.matchQuery("title", "华为手机");
query.operator(Operator.AND);//求并集
sourceBulider.query(query);

searchRequest.source(sourceBulider);


SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);


SearchHits searchHits = searchResponse.getHits();
//获取记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);

List<Goods> goodsList = new ArrayList<>();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String sourceAsString = hit.getSourceAsString();

//转为java
Goods goods = JSON.parseObject(sourceAsString, Goods.class);

goodsList.add(goods);
}

for (Goods goods : goodsList) {
System.out.println(goods);
}
}

模糊查询-脚本

wildcard查询:会对查询条件进行分词。还可以使用通配符 ?(任意单个字符) 和 * (0个或多个字符)
prefix查询:前缀查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# wildcard 查询。查询条件分词,模糊查询 华为,华,*华*
GET goods/_search
{
"query": {
"wildcard": {
"title": {
"value": "华*"
}
}
}
}


# 前缀查询
GET goods/_search
{
"query": {
"prefix": {
"brandName": {
"value": "三"
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
* 模糊查询:WildcardQuery
*/
@Test
public void testWildcardQuery() throws IOException {


SearchRequest searchRequest = new SearchRequest("goods");

SearchSourceBuilder sourceBulider = new SearchSourceBuilder();

WildcardQueryBuilder query = QueryBuilders.wildcardQuery("title", "华*");

sourceBulider.query(query);

searchRequest.source(sourceBulider);


SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);


SearchHits searchHits = searchResponse.getHits();
//获取记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);

List<Goods> goodsList = new ArrayList<>();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String sourceAsString = hit.getSourceAsString();

//转为java
Goods goods = JSON.parseObject(sourceAsString, Goods.class);

goodsList.add(goods);
}
for (Goods goods : goodsList) {
System.out.println(goods);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
* 模糊查询:perfixQuery
*/
@Test
public void testPrefixQuery() throws IOException {


SearchRequest searchRequest = new SearchRequest("goods");

SearchSourceBuilder sourceBulider = new SearchSourceBuilder();

PrefixQueryBuilder query = QueryBuilders.prefixQuery("brandName", "三");

sourceBulider.query(query);

searchRequest.source(sourceBulider);


SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);


SearchHits searchHits = searchResponse.getHits();
//获取记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);

List<Goods> goodsList = new ArrayList<>();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String sourceAsString = hit.getSourceAsString();

//转为java
Goods goods = JSON.parseObject(sourceAsString, Goods.class);

goodsList.add(goods);
}

for (Goods goods : goodsList) {
System.out.println(goods);
}
}

范围查询-脚本

range 范围查询:查找指定字段在指定范围内包含值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# 范围查询 gte 大于等于 lte小于等于
GET goods/_search
{
"query": {
"range": {
"price": {
"gte": 2000,
"lte": 3000
}
}
}
}

# 范围查询 gte 大于等于 lte小于等于
GET goods/_search
{
"query": {
"range": {
"price": {
"gte": 2000,
"lte": 3000
}
}
},
"sort": [
{
"price": {
"order": "desc"
}
}
]
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/**
* 1. 范围查询:rangeQuery
* 2. 排序
*/
@Test
public void testRangeQuery() throws IOException {
SearchRequest searchRequest = new SearchRequest("goods");

SearchSourceBuilder sourceBulider = new SearchSourceBuilder();

//范围查询
RangeQueryBuilder query = QueryBuilders.rangeQuery("price");

//指定下限 gte大于等于
query.gte(2000);
//指定上限 小于等于
query.lte(3000);

sourceBulider.query(query);

//排序
sourceBulider.sort("price", SortOrder.DESC);
searchRequest.source(sourceBulider);

SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits searchHits = searchResponse.getHits();
//获取记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);

List<Goods> goodsList = new ArrayList<>();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String sourceAsString = hit.getSourceAsString();

//转为java
Goods goods = JSON.parseObject(sourceAsString, Goods.class);

goodsList.add(goods);
}
for (Goods goods : goodsList) {
System.out.println(goods);
}
}

queryString查询-脚本

queryString:
• 会对查询条件进行分词。
• 然后将分词后的查询条件和词条进行等值匹配
• 默认取并集(OR)
• 可以指定多个查询字段

1
2
3
4
5
6
7
8
9
10
# queryString
GET goods/_search
{
"query": {
"query_string": {
"fields": ["title","categoryName","brandName"],
"query": "华为"
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
* queryString
*/
@Test
public void testQueryStringQuery() throws IOException {


SearchRequest searchRequest = new SearchRequest("goods");

SearchSourceBuilder sourceBulider = new SearchSourceBuilder();

//queryString
QueryStringQueryBuilder query = QueryBuilders.queryStringQuery("华为手机")
.field("title")
.field("categoryName")
.field("brandName")
.defaultOperator(Operator.AND);
sourceBulider.query(query);
searchRequest.source(sourceBulider);

SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits searchHits = searchResponse.getHits();
//获取记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);

List<Goods> goodsList = new ArrayList<>();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String sourceAsString = hit.getSourceAsString();

//转为java
Goods goods = JSON.parseObject(sourceAsString, Goods.class);

goodsList.add(goods);
}

for (Goods goods : goodsList) {
System.out.println(goods);
}
}

布尔查询

boolQuery:对多个查询条件连接。连接方式:
• must(and):条件必须成立
• must_not(not):条件必须不成立
• should(or):条件可以成立
• filter:条件必须成立,性能比must高。不会计算得分

1
2
3
4
5
6
7
8
9
GET goods/_search
{
"query": {
"match": {
"title": "华为手机"
}
},
"size": 500
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# 计算得分
GET goods/_search
{
"query": {
"bool": {
"must": [
{
"term": {
"brandName": {
"value": "华为"
}
}
}
]
}
}
}

# 不计算得分
GET goods/_search
{
"query": {
"bool": {
"filter": [
{
"term": {
"brandName": {
"value": "华为"
}
}
}
]
}
}
}


# 计算得分 品牌是三星,标题还得电视
GET goods/_search
{
"query": {
"bool": {
"must": [
{
"term": {
"brandName": {
"value": "三星"
}
}
}
],
"filter": {
"term": {
"title": "电视"
}
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/**
* 布尔查询:boolQuery
* 1. 查询品牌名称为:华为
* 2. 查询标题包含:手机
* 3. 查询价格在:2000-3000
*/
@Test
public void testBoolQuery() throws IOException {

SearchRequest searchRequest = new SearchRequest("goods");
SearchSourceBuilder sourceBulider = new SearchSourceBuilder();
//1.构建boolQuery
BoolQueryBuilder query = QueryBuilders.boolQuery();

//2.构建各个查询条件
//2.1 查询品牌名称为:华为
QueryBuilder termQuery = QueryBuilders.termQuery("brandName","华为");
query.must(termQuery);

//2.2. 查询标题包含:手机
QueryBuilder matchQuery = QueryBuilders.matchQuery("title","手机");
query.filter(matchQuery);

//2.3 查询价格在:2000-3000
QueryBuilder rangeQuery = QueryBuilders.rangeQuery("price");
((RangeQueryBuilder) rangeQuery).gte(2000);
((RangeQueryBuilder) rangeQuery).lte(3000);
query.filter(rangeQuery);

//3.使用boolQuery连接
sourceBulider.query(query);
searchRequest.source(sourceBulider);

SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);


SearchHits searchHits = searchResponse.getHits();
//获取记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);

List<Goods> goodsList = new ArrayList<>();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String sourceAsString = hit.getSourceAsString();

//转为java
Goods goods = JSON.parseObject(sourceAsString, Goods.class);

goodsList.add(goods);
}

for (Goods goods : goodsList) {
System.out.println(goods);
}
}

聚合查询

• 指标聚合:相当于MySQL的聚合函数。max、min、avg、sum等
• 桶聚合:相当于MySQL的 group by 操作。不要对text类型的数据进行分组,会失败。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# 查询最贵的华为手机,max_price命名随便取,取一个有意义的名字
GET goods/_search
{
"query": {
"match": {
"title": "华为手机"
}
},
"aggs": {
"max_price":{
"max": {
"field": "price"
}
}
}
}

# 桶聚合 分组
GET goods/_search
{
"query": {
"match": {
"title": "电视"
}
},
"aggs": {
"goods_brands": {
"terms": {
"field": "brandName",
"size": 100
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/**
* 聚合查询:桶聚合,分组查询
* 1. 查询title包含手机的数据
* 2. 查询品牌列表
*/
@Test
public void testAggQuery() throws IOException {

SearchRequest searchRequest = new SearchRequest("goods");

SearchSourceBuilder sourceBulider = new SearchSourceBuilder();

// 1. 查询title包含手机的数据
MatchQueryBuilder query = QueryBuilders.matchQuery("title", "手机");

sourceBulider.query(query);

// 2. 查询品牌列表
/*
参数:
1. 自定义的名称,将来用于获取数据
2. 分组的字段
*/
AggregationBuilder agg = AggregationBuilders.terms("goods_brands").field("brandName").size(100);
sourceBulider.aggregation(agg);

searchRequest.source(sourceBulider);
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

SearchHits searchHits = searchResponse.getHits();
//获取记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);

List<Goods> goodsList = new ArrayList<>();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String sourceAsString = hit.getSourceAsString();

//转为java
Goods goods = JSON.parseObject(sourceAsString, Goods.class);

goodsList.add(goods);
}

for (Goods goods : goodsList) {
System.out.println(goods);
}

// 获取聚合结果
Aggregations aggregations = searchResponse.getAggregations();

Map<String, Aggregation> aggregationMap = aggregations.asMap();

//System.out.println(aggregationMap);
Terms goods_brands = (Terms) aggregationMap.get("goods_brands");

List<? extends Terms.Bucket> buckets = goods_brands.getBuckets();

List brands = new ArrayList();
for (Terms.Bucket bucket : buckets) {
Object key = bucket.getKey();
brands.add(key);
}

for (Object brand : brands) {
System.out.println(brand);
}
}

高亮查询

高亮三要素:
• 高亮字段
• 前缀
• 后缀

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
GET goods/_search
{
"query": {
"match": {
"title": "电视"
}
},
"highlight": {
"fields": {
"title": {
"pre_tags": "<font color='red'>",
"post_tags": "</font>"
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/**
*
* 高亮查询:
* 1. 设置高亮
* * 高亮字段
* * 前缀
* * 后缀
* 2. 将高亮了的字段数据,替换原有数据
*/
@Test
public void testHighLightQuery() throws IOException {
SearchRequest searchRequest = new SearchRequest("goods");

SearchSourceBuilder sourceBulider = new SearchSourceBuilder();

// 1. 查询title包含手机的数据
MatchQueryBuilder query = QueryBuilders.matchQuery("title", "手机");

sourceBulider.query(query);

//设置高亮
HighlightBuilder highlighter = new HighlightBuilder();
//设置三要素
highlighter.field("title");
highlighter.preTags("<font color='red'>");
highlighter.postTags("</font>");
sourceBulider.highlighter(highlighter);
// 2. 查询品牌列表
/*
参数:
1. 自定义的名称,将来用于获取数据
2. 分组的字段
*/
AggregationBuilder agg = AggregationBuilders.terms("goods_brands").field("brandName").size(100);
sourceBulider.aggregation(agg);

searchRequest.source(sourceBulider);
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

SearchHits searchHits = searchResponse.getHits();
//获取记录数
long value = searchHits.getTotalHits().value;
System.out.println("总记录数:"+value);

List<Goods> goodsList = new ArrayList<>();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String sourceAsString = hit.getSourceAsString();

//转为java
Goods goods = JSON.parseObject(sourceAsString, Goods.class);

// 获取高亮结果,替换goods中的title
Map<String, HighlightField> highlightFields = hit.getHighlightFields();
HighlightField HighlightField = highlightFields.get("title");
Text[] fragments = HighlightField.fragments();
//替换
goods.setTitle(fragments[0].toString());


goodsList.add(goods);
}

for (Goods goods : goodsList) {
System.out.println(goods);
}

}

重建索引

随着业务需求的变更,索引的结构可能发生改变。
ElasticSearch的索引一旦创建,只允许添加字段,不允许改变字段。因为改变字段,需要重建倒排索引,影响内部缓
存结构,性能太低。
那么此时,就需要重建一个新的索引,并将原有索引的数据导入到新索引中。

原索引库 :student_index_v1

新索引库 :student_index_v2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# 新建student_index_v1索引,索引名称必须全部小写
PUT student_index_v1
{
"mappings": {
"properties": {
"birthday":{
"type": "date"
}
}
}
}
# 查询索引
GET student_index_v1
# 添加数据
PUT student_index_v1/_doc/1
{
"birthday":"2020-11-11"
}
# 查询数据
GET student_index_v1/_search
# 随着业务的变更,换种数据类型进行添加数据,程序会直接报错
PUT student_index_v1/_doc/1
{
"birthday":"2020年11月11号"
}
# 业务变更,需要改变birthday数据类型为text
# 1:创建新的索引 student_index_v2
# 2:将student_index_v1 数据拷贝到 student_index_v2

# 创建新的索引
PUT student_index_v2
{
"mappings": {
"properties": {
"birthday":{
"type": "text"
}
}
}
}

DELETE student_index_v2
# 2:将student_index_v1 数据拷贝到 student_index_v2
POST _reindex
{
"source": {
"index": "student_index_v1"
},
"dest": {
"index": "student_index_v2"
}
}
# 查询新索引库数据
GET student_index_v2/_search
# 在新的索引库里面添加数据
PUT student_index_v2/_doc/2
{
"birthday":"2020年11月13号"
}

2 SpringData Elasticsearch客户端

目标

  • SpringData的作用:简化了数据库的增删改查操作
  • SpringDataElasticsearch入门[掌握]
  • SpringDataElasticsearch查询命名规则[掌握]

SpringDataJpa介绍[集成]

JPA是一个规范,真正操作数据库的是Hibernate(实现数据库增删改查框架[ORM框架],操作数据库采用的方式是面向对象[不写SQL语句]),而springdatajpa是对jpa的封装,将CRUD的方法封装到指定的方法中,操作的时候,只需要调用方法即可。

Spring Data Jpa的实现过程:

  1. 定义实体,实体类添加Jpa的注解 @Entity @Talbe @Cloumn @Id
  2. 定义接口,接口要继承JpaRepository的接口
  3. 配置spring容器,applicationContext.xml/SpringApplication.run(T.class,args)

Spring Data ElasticSearch简介

(1)SpringData介绍

Spring Data是一个用于简化数据库、非关系型数据库、索引库访问,并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快捷,并支持map-reduce框架和云计算数据服务。 Spring Data可以极大的简化JPA(Elasticsearch…)的写法,可以在几乎不用写实现的情况下,实现对数据的访问和操作。除了CRUD外,还包括如分页、排序等一些常用的功能。

Spring Data的官网:http://projects.spring.io/spring-data/

Spring Data常用的功能模块如下:

(2)SpringData Elasticsearch介绍

Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端API 进行封装 。Spring Data为Elasticsearch项目提供集成搜索引擎。Spring Data Elasticsearch POJO的关键功能区域为中心的模型与Elastichsearch交互文档和轻松地编写一个存储索引库数据访问层。

官方网站:http://projects.spring.io/spring-data-elasticsearch/

SpringData Elasticsearch入门

搭建工程

(1)搭建工程

创建项目 elasticsearch-springdata-es

(2)pom.xml依赖

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.atguigu</groupId>
<artifactId>elasticsearch-springdata-es</artifactId>
<version>1.0-SNAPSHOT</version>

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.2.1.RELEASE</version>
</parent>

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>
</dependencies>


<build>
<plugins>
<!-- java编译插件 -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
</plugins>
</build>
</project>
增加索引数据

(1)编写实体类

创建com.atguigu.domain.Item,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
@Data
@AllArgsConstructor
@NoArgsConstructor
@ToString
@Document(indexName = "item",shards = 1,replicas = 1)
public class Item {
@Id
private Long id;

@Field(type = FieldType.Text,analyzer = "ik_max_word")
private String title;

@Field(type = FieldType.Keyword)
private String category;// 分类

@Field(type = FieldType.Keyword)
private String brand; // 品牌

@Field(type = FieldType.Double)
private Double price; // 价格

@Field(index = false, type = FieldType.Keyword)
private String images; // 图片地址
}

映射

Spring Data通过注解来声明字段的映射属性,有下面的三个注解:

@Document 作用在类,标记实体类为文档对象,一般有四个属性
indexName:对应索引库名称
shards:分片数量,默认5
replicas:副本数量,默认1
@Id 作用在成员变量,标记一个字段作为id主键
@Field 作用在成员变量,标记为文档的字段,并指定字段映射属性:
type:字段类型,取值是枚举:FieldType
index:是否索引,布尔类型,默认是true
store:是否存储,布尔类型,默认是false
analyzer:分词器名称:ik_max_word

配置 application.yml 文件

1
2
3
4
5
spring:
data:
elasticsearch:
cluster-name: elasticsearch #自己ES中配置文件的cluster-name
cluster-nodes: 127.0.0.1:9300
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@RunWith(SpringRunner.class)
@SpringBootTest
public class TestSpringBootES {

@Autowired
private ElasticsearchTemplate elasticsearchTemplate;

@Autowired
private ItemRepository itemRepository;

@Test
public void testCreate() {
// 创建索引,会根据Item类的@Document注解信息来创建
elasticsearchTemplate.createIndex(Item.class);
// 配置映射,会根据Item类中的id、Field等字段来自动完成映射
elasticsearchTemplate.putMapping(Item.class);
}

使用 kibana 查询

1
GET item

增删改操作

Spring Data 的强大之处,就在于你不用写任何DAO处理,自动根据方法名或类的信息进行CRUD操作。只要你定义一个接口,然后继承Repository提供的一些子接口,就能具备各种基本的CRUD功能。

编写 ItemRepository

1
2
3
public interface ItemRepository extends ElasticsearchRepository<Item,Long> {

}

增加

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
@RunWith(SpringRunner.class)
@SpringBootTest
public class TestSpringBootES {

@Autowired
private ElasticsearchTemplate elasticsearchTemplate;

@Autowired
private ItemRepository itemRepository;

@Test
public void testAdd() {
Item item = new Item(1L, "小米手机7", " 手机",
"小米", 3499.00, "http://image.leyou.com/13123.jpg");
itemRepository.save(item);
}

}
1
GET item/_search

修改(id存在就是修改,否则就是插入)

1
2
3
4
5
6
7
@Test
public void testUpdate() {
Item item = new Item(1L, "小米手机7777", " 手机",
"小米", 9499.00, "http://image.leyou.com/13123.jpg");
itemRepository.save(item);
}
GET item/_search

批量新增

1
2
3
4
5
6
7
8
9
 @Test
public void indexList() {
List<Item> list = new ArrayList<>();
list.add(new Item(2L, "坚果手机R1", " 手机", "锤子", 3699.00, "http://image.leyou.com/123.jpg"));
list.add(new Item(3L, "华为META10", " 手机", "华为", 4499.00, "http://image.leyou.com/3.jpg"));
// 接收对象集合,实现批量新增
itemRepository.saveAll(list);
}
GET item/_search

删除操作

1
2
3
4
@Test
public void testDelete() {
itemRepository.deleteById(1L);
}

根据id查询

1
2
3
4
5
@Test
public void testQuery(){
Optional<Item> optional = itemRepository.findById(2L);
System.out.println(optional.get());
}

查询全部,并按照价格降序排序

1
2
3
4
5
6
@Test
public void testFind(){
// 查询全部,并按照价格降序排序
Iterable<Item> items = this.itemRepository.findAll(Sort.by(Sort.Direction.DESC, "price"));
items.forEach(item-> System.out.println(item));
}

自定义方法

Spring Data 的另一个强大功能,是根据方法名称自动实现功能。
比如:你的方法名叫做:findByTitle,那么它就知道你是根据title查询,然后自动帮你完成,无需写实现类。
当然,方法名称要符合一定的约定:

Keyword Sample Elasticsearch Query String
And findByNameAndPrice {"bool" : {"must" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}}
Or findByNameOrPrice {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}}
Is findByName {"bool" : {"must" : {"field" : {"name" : "?"}}}}
Not findByNameNot {"bool" : {"must_not" : {"field" : {"name" : "?"}}}}
Between findByPriceBetween {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
LessThanEqual findByPriceLessThan {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
GreaterThanEqual findByPriceGreaterThan {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}}
Before findByPriceBefore {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
After findByPriceAfter {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}}
Like findByNameLike {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}}
StartingWith findByNameStartingWith {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}}
EndingWith findByNameEndingWith {"bool" : {"must" : {"field" : {"name" : {"query" : "*?","analyze_wildcard" : true}}}}}
Contains/Containing findByNameContaining {"bool" : {"must" : {"field" : {"name" : {"query" : "**?**","analyze_wildcard" : true}}}}}
In findByNameIn(Collectionnames) {"bool" : {"must" : {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"name" : "?"}} ]}}}}
NotIn findByNameNotIn(Collectionnames) {"bool" : {"must_not" : {"bool" : {"should" : {"field" : {"name" : "?"}}}}}}
Near findByStoreNear Not Supported Yet !
True findByAvailableTrue {"bool" : {"must" : {"field" : {"available" : true}}}}
False findByAvailableFalse {"bool" : {"must" : {"field" : {"available" : false}}}}
OrderBy findByAvailableTrueOrderByNameDesc {"sort" : [{ "name" : {"order" : "desc"} }],"bool" : {"must" : {"field" : {"available" : true}}}}

例如,我们来按照价格区间查询,定义这样的一个方法:

1
2
3
4
5
6
7
8
9
public interface ItemRepository extends ElasticsearchRepository<Item,Long> {
/**
* 根据价格区间查询
* @param price1
* @param price2
* @return
*/
List<Item> findByPriceBetween(double price1, double price2);
}

然后添加一些测试数据:

1
2
3
4
5
6
7
8
9
10
11
@Test
public void indexList() {
List<Item> list = new ArrayList<>();
list.add(new Item(1L, "小米手机7", "手机", "小米", 3299.00, "http://image.leyou.com/13123.jpg"));
list.add(new Item(2L, "坚果手机R1", "手机", "锤子", 3699.00, "http://image.leyou.com/13123.jpg"));
list.add(new Item(3L, "华为META10", "手机", "华为", 4499.00, "http://image.leyou.com/13123.jpg"));
list.add(new Item(4L, "小米Mix2S", "手机", "小米", 4299.00, "http://image.leyou.com/13123.jpg"));
list.add(new Item(5L, "荣耀V10", "手机", "华为", 2799.00, "http://image.leyou.com/13123.jpg"));
// 接收对象集合,实现批量新增
itemRepository.saveAll(list);
}

不需要写实现类,然后我们直接去运行:

1
2
3
4
5
6
7
@Test
public void queryByPriceBetween(){
List<Item> list = this.itemRepository.findByPriceBetween(2000.00, 3500.00);
for (Item item : list) {
System.out.println("item = " + item);
}
}

虽然基本查询和自定义方法已经很强大了,但是如果是复杂查询(模糊、通配符、词条查询等)就显得力不从心了。此时,我们只能使用原生查询。


本博客目前大部分文章都是参考尚硅谷或者马士兵教育的学习资料!